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variable molar volume 
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Present-day treatments of diffusion in metallic solid solutions require an accurate, 
convenient analysis that takes account of the actual variations of atomic size with 
concentration. Recent research by the author has produced such an analysis, 
which employs ordinary Cartesian coordinates. The first and second Fick equations 
are essentially the same as the usual forms (for constant, equal atomic size), differ- 
ing only in the addition of the factor ~?, the total molar volume of the solid solution. 
The prevalent erroneous concept of an "invariant'" for diffusion demonstrates the 
need for a clearer understanding of the role of reference planes in treatments of 
diffusion. Reference systems of two types are dicussed: conventional reference sys- 
tems (Fick and molecular), and the lattice (Kirkendall) reference system. The 
diffusion velocity, v, of a given component is used as the basis for defining the 
diffusion flux. Absolute values of v can be determined from data on the Kirkendall 
shift, but only relative values (v - co) can be employed if only a conventional refer- 
ence system is used in the analysis. 

1, I n t r o d u c t i o n  
In the past, most treatments of diffusion have 
been for the simple case of equal and constant 
partial molar volumes, ~ = ~ ,  of the interdif- 
fusing metals. A recent advance in the theory of 
vacancy diffusion [1] has shown that the mag- 
nitude of the independent vacancy flux produced 
during interdiffusion depends on the difference 
between l~l and ~ .  In particular, in the case of 
tin diffusing in a copper-tin solid solution, 
where Vs, = 1.85 17"cu, the independent vacancy 
fluxes are so large that the copper atoms are 
forced to flow up their concentration gradient, 
resulting in a negative value for the intrinsic dif- 
fusion, Dcu [1]. Even for more usual differences in 
atomic volume, the effect on vacancies is appreci- 
able; therefore, a convenient treatment of dif- 
fusion for unequal, concentration-dependent 
partial molar volumes is needed for contem- 
porary analyses of diffusion data. 

In later sections of this paper it will be shown 
that correct treatments of interdiffusion can be 

made using the following simple forms of the 
first Fick law (Equation 28 of Section 2): 

- / )  dX, 
j ,  = 

P dx 

and of the second Fick law (Equation 69 of 
Section 5): 

(Guy and Oikawa [1] used the symbol J~ to refer 
to a flux relative to the crystal lattice; the present 
symbol for this type of flux will be LJ 1. Similarly, 
they used mJl to refer to a flux relative to the 
molecular reference system; for convenience in 
the present paper this type of flux will be 
denoted by the symbol J~.) Thus J1 is the flux 
(measured in mot m-  2 sec- ~) of Metal 1 relative to 
the molecular reference system, /3 is the usual 
interdiffusion coefficient, Q is the total molar 
volume (m 3 mol- z) at the point being considered, 
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X~ is the concentration in mole fraction, x 
is the usual Cartesian coordinate, and t is time. 
For the special case ~ = I72 = constant, the 
equations reduce to the usual forms of the Fick 
laws. 

These equations are much simpler than the 
expressions proposed by previous investigators 
[2-10] and are free of other shortcomings (dis- 
cussed below) of several of the earlier solutions. 
The treatments in the existing literature are 
extremely diverse because the nature of a given 
treatment depends on five independent choices 
made by the investigator. The features in ques- 
tion are listed below. 

1.1. Coordinate  sys tem 
This can employ either the usual Cartesian coor- 
dinate x, or a special coordinate { that varies 
with changes in total molar volume i7. In 
general, Cartesian coordinates are more con- 
venient. 

1.2. Reference point  in spec imen 
This can be either an end of the specimen (far 
from the region of diffusion) or a Matano inter- 
face near the centre of the region of diffusion. 
The latter choice has both practical and theoreti- 
cal advantages. 

1.3. Convent ional  reference system 
The two most common are the Fick (or volume- 
fixed) and the molecular (mole-fixed) reference 
systems. Essentially, equal volumes of Metals 1 
and 2 cross the initial interface in the Fick sys- 
tems, whereas equal numbers of moles cross the 
reference plane in the molecular system. A com- 
mon error in the use of the Fick reference system 
occurs in connection with the construction of the 
Matano interface. The equations involving the 
fluxes rJ~ and f J2 referred to the Fick reference 
system are 

f J 1  - /5 dCldx r J2 = _ /5 ~dG (1) 

and involve concentrations C in tool m -3. But on 
a plot of diffusion data as C against x, the 
Matano interface divides the plot in such a way 
that equal numbers of moles of Metal 1 and 
Metal 2 have crossed the interface; that is, 
J1 = - J 2 .  A common (erroneous) conclu- 
sion is that r Jl = - f J : ,  but the error here is 
that J~ and J2 are referred to the molecular sys- 

tern, whereas the form of the first Fick law 
employed in Equation 1 is appropriate for the 
Fick reference system. The fluxes employed in 
Equation 1 are not equal and opposite but satisfy 
the following relation (see Equation 16): 

~s ,~  = - ~ 4 r  (2) 

1.4. Definition o f / 9  
If ~ = ~ = constant, then the definition of 
the interdiffusion coefficient /5 given by 
Equation 1 is correct both for the Fick and for 
the molecular reference systems. For variable 
partial molar volumes, there is general agree- 
ment that/5 should be defined so that Equation 
1 continues to be valid for  the Fick reference 
system. A logical consequence, however, is that 
the corresponding form of the first Fick law for 
use with the molecular reference system is that 
given by Equation 28 (Section 2). The difference 
between Equations 28 and 1 is not due simply to 
a conversion between the concentration units X 
and C. If Equation 28 is written in terms of C the 
result is 

- D V d C I  
J' - ~ dx  (3) 

In fact, the difference is a logical result of the use 
of two different reference planes to determine 
the magnitude of the diffusive flux. 

1.5. Inclusion of data on motion of 
markers (Kirkendall effect) 

These data may or may not be available for a 
given diffusion curve. In the absence of such 
data, only/5 (a single coefficient) can be deter- 
mined as discussed in Section 2. With the aid of 
data on Kirkendall markers, two intrinsic 
diffusion coefficients, D1 and D2, can be deter- 
mined. D1 and D2 satisfy the relation 

= X2D, + X , D  2 (4) 

provided they are defined by the analogue of 
Equation 28 (Section 2). 

In the metallurgical literature the subject of 
reference planes has usually been treated in a 
relatively elementary manner. Fortunately, the 
more advanced conceptual and mathematical 
problems connected with reference systems for 
diffusion are available in the literature of chemical 
engineering and of non-equilibrium thermo- 
dynamics. The methods described by Haase 
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[1 1] are employed here. Two types of reference 
systems are of interest. One type (lattice system) 
is physically present in a diffusion specimen: an 
array of Kirkendall markers is an example. This 
type will be considered in Section 3. The other 
type of reference system (conventional system) is 
not visible in the diffusion specimen, but instead 
is a construction created for experimental and/or 
theoretical convenience. A conventional refer- 
ence system can always be employed in the 
analysis of diffusion data. The lattice system 
may be used (often in addition to a conventional 
system) provided the necessary observations 
have been made on appropriate markers in the 
diffusion specimen. 

Although the analysis presented here applies 
for variable atomic volumes, schematic explana- 
tions will be given for constant, but unequal, 
atomic volumes of the two components; namely, 

= 2 172. In this case no overall change in vol- 
ume accompanies the process of diffusion 
between pure Metal 1 and Metal 2, assumed for 
simplicity to form a complete series of solid 
solutions. For convenience in explaining in 
Section 2 why two different conventional re- 
ference systems do not coincide, use will be made 
of the intrinsic diffusion coefficients, rD~ and rD2, 
of the two components. Each will be assumed to 
be constant and their ratio will be taken as f D2 /  

rDI = 5. It should be recognized, however, that 
such detailed information cannot be obtained 
from the data discussed in Section 2 but only 
with the aid of additional data available from 
use of the lattice reference system (Section 3). 

2. Conventional reference systems 
Fig. la shows the maximum amount of exper- 
imental data that could be obtained from an 
experiment involving the interdiffusion of a 
specimen which, prior to the diffusion treatment, 
consisted of a bar of length L of pure Metal 1 
welded to a similar bar of pure Metal 2. 
Although the midpoint L .of  the diffused speci- 
men can be located by a measurement from an 
end of the bar, a reference plane at this point 
does not possess the generality desirable for the 
analysis of the diffusion data. Concentrations Cl 
and (72 are related by the equation 

C,r + (72~ = 1 (5) 

and therefore only one concentration gradient is 
independent. The relation between the two 

{a) 
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v~2 ~ l'ea 1 
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X m = O  ,.'r = 0 (b) 
Distance, x 

Figure 1 (a) Typical diffusion curve for the interdiffusion of  
Metals 1 and 2 described in the text. The concentration unit  
for C 2 is moles per unit volume. (b) The origin xf = 0 of the 
Fick reference system coincides with the midpoint  L shown 
in (a). Areas 1 and 2 are in the ratio ~ / ~ ,  but  the interface 
at x m = 0 divides the diffusion curve into two equal areas. 

gradients, even for the case of variable partial 
molar volumes, is 

tic, r dQ 
- ( 6 )  

dx V~ dx 

Because there is only one independent concen- 
tration gradient, there can be only one indepen- 
dent diffusion coefficient in an analysis involving 
a conventional reference system. The following 
analysis is for a typical volume element in a 
binary system that has undergone diffusion for 
some arbitrary period of time. 

Rather than using the first Fick law (see 
Equation 17 below) to define a diffusion flux, we 
employ the relations 

"]2 ~--- C2"7-32 and J1 = C l ' O l  (7) 

where vi is the diffusion velocity of an average 
atom of component i, Ci is concentration in 
moles of component i per unit volume, and J~ is 
therefore in units of  moles per unit area per unit 
time. The velocities v~ and v 2 must be measured 
relative to some reference velocity. For example, 
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the velocity of  the midpoint L could be used for 
this purpose, but this would be an arbitrary 
choice without general usefulness. A useful con- 
vention defines the reference system as moving 
with a velocity co that is a weighted average of 
the diffusion velocities of the two components: 

co = /~lv, +/32v2 (8) 

The weighting factors fl~ and f12 are normalized 
so that 

/ 3 , + / ~  = 1 (9) 

For example, we can weight v~ and v2 by the 
relative number of  atoms of  each component in 
the volume element; that is, by their mole frac- 
tions. Since X~ + X 2 = 1 the condition of 
Equation 9 is immediately obtained without any 
need for normalization. The value of  co obtained 
in this manner 

(ore = X~v, + X2v2 (10) 

represents the average velocity of  the atoms of  
the two components and defines the molecular 
reference system. A second example, the Fiek 
reference system, is based on the average velocity 
of  the two components in terms of  volume (rather 
than number of atoms). The appropriate weight- 
ing factors for use in Equation 8 are now the 
volume fractions, C~ ~ and C ~ ,  of  the two 
components 

r ,  = C , ~  and f12 = C 2 ~  (11) 

since the sum of  the two volume fractions is 
unity as required in Equation 9. The value of  (o 
obtained in this case is 

(o~ = c , r  + C ~ v 2  0 2 )  

where (or is known as the mean volume velocity 
and defines the Fick reference system. 

In general, the velocities relative to co are 
(vj - co) and (v 2 - (o). Therefore the diffusion 
fluxes are given by 

o, Ji = C l ( v l  - -  CO) and ~,J2 = C ~ ( v 2 -  (o) 

(13) 

The numerical value of ~J; will depend, of  
course, on the convention used to define the 
reference velocity 09. From Equations 7, 8, 9 and 
13 we obtain the general relation between the 
two diffusion fluxes 

fi~ o,J, - f12 ~,J2 (14) 
C, C2 

4 3 2 0  

Although the fluxes will be equal and opposite 
(the case considered in elementary treatments) if 
fi~/Cl = fl2/C2, they can be unequal for other 
choices of the reference system. 

In the case of the Fick reference system 
defined by Equation 12, the diffusion fluxes are 
given by 

fJi = C l ( V l -  (of) and r J2 = C 2 ( v 2 -  coo 

05) 

The following relation between these two fluxes 
is obtained by substituting in Equation 14 the 
values of  flj and f12 from Equation 11: 

r ,  ~ - rJ2~ (16) 

In this case equal volumes of atoms of  Com- 
ponents l and 2 diffuse in opposite directions 
across reference planes. Consequently, the inter- 
face at which the bars of Metal 1 and of Metal 
2 were initially joined (at L in Fig. la) is the 
origin of the Fick reference system (Fig. lb). 

A diffusion coefficient D that enters into the 
first Fick law, J = - D(dc/dx) ,  is not necess- 
arily the usual interdiffusion coefficient 15 that is 
widely employed in the literature on diffusion. 
Of the many possible fluxes defined by Equation 
13, J m u s t  be the rJ defined by Equation 15. Of  
the many possible concentration units (such as 
mole fraction, X), de/dx  must be in units of  
moles per unit volume, C (or this unit multiplied 
by a constant). Therefore, we write the first Fick 
law for Component  2 in the form 

dC~ 
f4  - z3 d x  (17) 

/ )  has the same value for Component  1 as for 
Component  2, but in view of  Equation 6, 

cJ~ - • d G  - -=-~ r J2 (18) 
dx V, 

in agreement with Equation 16. 
The Fick reference system and the concen- 

tration unit moles per unit volume, C;, are 
closely connected. First, the C; values are used in 
Equation 12 to define the reference velocity. 
Second, if the diffusion curve is plotted in terms 
of C2, as in the example of  Fig. la, then the 
origin of  the Fick reference system divides the 
curve into two areas in the ratio V2/V 1 as shown 
in Fig. lb. Since the data are plotted in terms of 
C2, it is convenient also to write Fick's law in 
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Figure 2 (a) The same experimental data  as in Fig. 1 but  
plotted in terms of  concentration in mole fraction )(2. (b) 
Location of  the origin x m = 0 of  the molecular reference 
system on the diffusion curve of  (a). Area 1 is not  equal to 
Area 2. The fluxes J relative to the molecular reference 
system are compared schematically with the fluxes LJ rela- 
tive to the lattice reference system. 

terms of  C2 (Equation 17), and therefore to 
obtain the usual interdiffusion coefficient s as a 
measure of diffusion. 

The experimental data of Figl la can alterna- 
tively be plotted in terms of mole fraction X2 as 
shown in Fig. 2a. Since the molecular reference 
system is defined in terms of  the ~ (Equation 
10), it is convenient in this case to use fluxes 
referred to the molecular reference system 

J1 = Cl('U1 - (-0m) and J2 ~-- C 2 ( v 2 -  (Dm) 

(19) 

The relation between the two fluxes in this case 
can be obtained from Equation 14 with the aid 
of the relations 

= Cll  p and X 2 ~- CzV (20) 

where I p is the (total) molar volume of the solid 
solution. The result is 

Ji - ./2 (21) 

Thus, equal numbers of atoms of Components 1 
and 2 diffuse in opposite directions across refer- 
ence planes in the molecular reference system. 
This relation between the two fluxes is shown 
schematically in Fig. 2b for the reference plane 
at Xm = 0 in the molecular reference system. 
The number of atoms of  Metal 2 that crossed 
this reference plane to the left must equal the 
number of atoms of Metal 1 that crossed this 
reference plane in the opposite direction. The 
location of this reference plane can be deter- 
mined more easily on a plot of  the diffusion 
curve in terms of the concentration unit C2 
(Fig. lb), since the areas corresponding to Area 
1 and Area 2 in Fig. 2b are then equal and can 
be shown to contain equal numbers of atoms of  
Components 1 and 2, respectively. Because in 
our example Atom 1 has twice the volume of 
Atom 2 (because ~ = 2 ~ ) ,  the origin in Fig. 2b 
does not coincide with the midpoint L of the 
specimen in Fig. 2a, but instead continuously 
moves away from the midpoint with increasing 
time of diffusion. 

It is not difficult to reconcile the equal conven- 
tional fluxes, ,/1 = - ,/2 (and the single D value 
discussed below), with the fact that Atoms 1 and 
2 are "really" diffusing at different rates, as 
shown by the ratio of their intrinsic diffusion 
coefficients, fD2/fD~ = 5. The "real" fluxes 
shown schematically in Fig. 2b are those relative 
to the Kirkendall interface (Equation 44, Sec- 
tion 3) and represent the result of actual jump- 
ing (interchange with vacancies) of  Atoms 1 and 
2. A conventional flux is the sum of  a component 
caused by atomic jumping plus a convective 
component (bulk movement of the volume 
elements as a whole) caused by a combination of  
(a) differences in atomic volume and (b) the 
Kirkendall shift. For  clarity in the present 
illustrative example, values of ~ and rDi have 
been chosen to cause the two contributions to 
convection to act in opposite directions. 

The usual mutual diffusion coefficient s was 
defined by Equation 17 in terms of  the Fick 
reference system. Consequently, when the first 
Fick law is written in terms of  the molecular 
reference system 

dC2 
J2 - -  Om d---~- ( 2 2 )  

the diffusion coefficient Dm must have a different 
value than s The reasoning is the following. 
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Even though the Cartesian coordinate system x m 
(fixed in the molecular reference system) is 
moving relative to the corresponding Fick sys- 
tem xr, the concentration gradients are equal 
[12], i.e. d C 2 / d x  m = d C 2 / d x  r. Consequently, the 
concentration gradients in Equations 17 and 22 
are equal. The fluxes r J2 and ,12, however, are 
unequal as can be seen from a comparison of 
Equations 15 and 19. Therefore,/3 and D m must 
be unequal. The relation between them can be 
determined with the aid of Equations 15 and 19, 
since 

and 

r J2 - /5 d G  dx = C2(v2 - c~ (23) 

dC2 
32 = - Dr. d x  = C 2 ( v 2 -  ogre) (24) 

When the values of  mr from Equation 12 and of 
~m from Equation 10 are substituted in 
Equations 23 and 24, division of Equation 24 by 
Equation 23 leads to the relation 

P _  
D,,, = D (25)  

Substitution of Equation 25 in Equation 22 gives 
the form of the first Fick law for the molecular 
reference system in terms o f / ) :  

D V  dC2 
J 2 -  P~ dx (26) 

Alternatively, using the relation 

dC2 12, dX2 
= - (27) 

dx [7 .2 dx 

we can rewrite Equation 26 in terms of a con- 
centration gradient in mole fraction, 

13 dX2 
J2 = -- -~ dx (28) 

Equations 26 and 28 are valid for variable molar 
volumes. Just as the Fick reference system is 
connected with concentrations in moles per unit 
volume Ci, the molecular reference system is 
connected with mole fractions X,. For this reason 
the form of Fick's law given by Equation 28 is 
usually convenient for calculating Ji fluxes. 

Equations 17 and 22 represent Fick's law writ- 
ten for two different conventional reference sys- 
tems. Since D m is not equal to /3, evidently the 

interdiffusion coefficient is not  invariant relative 
to such a coordinate transformation. This fact 
does not agree with the central idea of a related 
series of paper in 1965 and 1966 by various 
authors [5, 6]. These authors proposed the con- 
cept of  an "invariant" for binary interdiffusion 

/5 = C, ~ rD2 + C2~ rD, (29) 

where /) is the ordinary interdiffusion (or 
mutual) diffusion coefficient, and rDj and rD 2 are 
intrinsic diffusion coefficients of Components 1 
and 2. This relation among the three D values 
was thought to remain the same for any choice 
of reference frame and to be valid for variable 
partial molar volumes. Since CT ~ and C2 ~ are 
the volume fractions of  Components 1 and 2, 
Equation 29 does not agree with Darken's well- 
known relation 

/3 = XID2 + XzD1 (30) 

where X l and X 2 are a t o m  fractions. Unfor- 
tunately the erroneous concept of an invariant 
for diffusion has been used in related work by 
other authors [7, 9] and in this way continues to 
influence present research results [13]. In fact, 
the relation of Equation 29 is merely the correct 
relation between /3 and the intrinsic diffusion 
coefficients when the latter are defined by 
analogy with Equation 17, giving the rDi coef- 
ficients. Equation 30, on the other hand, is for 
use with intrinsic coefficients defined by analogy 
with Equation 28, giving the Di coefficients. This 
point is discussed in detail in Section 3. 

The analysis by Stark [6] of the "invariant" 
has been widely quoted, and for this reason the 
erroneous features of  his analysis will be 
explained here. It is well known and has been 
clearly described by Haase [ 11] that the velocities 
Vl and v 2 in Equation 7 must be measured rela- 
tive to some reference velocity. In view of the 
fact that Stark chooses rD1 and rD2 to be intrin- 
sic diffusion coefficients, he automatically 
chooses the reference velocity to be that of the 
lattice (KirkendaU) reference system. In particu- 
lar for the composition at the Kirkendall interface 
the relations in Equation 7 have the operational 
meaning 

K Jr = C , (v ,  - Vn) 

and ~J2 = C2(v2 - vK) (31) 

where v K is the velocity of  the Kirkendall 
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interface. These relations state that the fluxes of 
Components 1 and 2 are measured as the num- 
ber of moles that cross the Kirdendall interface, 
in agreement with the meaning attached to the 
intrinsic diffusion coefficients f D  1 and rD2. 

Stark next obtains the difference 

KJI K J2 
( v ,  - v K )  - - v K )  

731 - -  '/)2 

and attempts to show that 

V 1 - -  73 2 ~ .U~I 

(32) 

- v 2  ( 3 3 )  

under an arbitrary transformation of coordi- 
nates. Obviously he does not mean a transform- 
ation in scale (such as from centimetres to 
inches) since a scale factor (such as 2.54) is then 
introduced. If he means the vK can be changed to 
a different value v'K, then he is requiring a 
change in the diffusional characterisitcs of the 
system and both u:J~ and K J2 must change to 
different values, K J ;  and K J ; .  A change of  this 
sort occurs in going from the Cu-Ni system, for 
example, to the Cu-Zn systems, but it is not 
considered to be a transformation of coordinates. 

The next step in Stark's analysis is to define 
two diffusion coefficients by the equations 

dCl 
J1 - DI ~ and "/2 - -  D2 dC2 

dx 

(34) 

and to state that this definition is valid for any 
coordinate system. In fact, as shown above in 
Equation 31, J~ = K Jl and J2 = K J2 and thus 
they are determined for one specific reference 
frame, the lattice coordinates. Stark's definition 
of intrinsic diffusion coefficients in Equation 34 
is further restricted by the fact that he chose the 
analogue of Equation 17 rather than the 
analogue of Equation 28. Consequently, his 
coefficients must be written f D  l and rD  2 to dis- 
tinguish them from the more rational D~ and/)2 
employed in Equation 30. 

The irrationality of  rD~ and fO 2 c a n  be 
appreciated when one recalls that the Kirkendall 
effect is intended to measure the difference in the 
number of  atoms of Metal 1 and Metal 2 that 
diffuse across a plane fixed in the lattice (the 
Kirkendall interface). Consider a case in which 
Jl  = - -  "]2, SO that the Kirkendall effect is zero. 

Because 

d C l  V2 d C 2  
- ( 3 5 )  

dx V l dx 

rD~ is no t  equal to f D  2 in Equation 34; instead 

f D  1 = ~ f D  2 (36) 

in the absence of a Kirkendall effect. On the 
other hand, if the analogue of Equation 28 is 
employed, the resulting intr i~ic diffusion coef- 
ficients (Dl and D2) are equal jif J1 = - J2. 

In summary, the correct interpretation of 
Stark's analysis shows that his final result 
(Equation 29), rather than being a useful 
invariant, is simply the fixed relation between 
the generally accepted interdiffusion coefficient 
/) and a type of  intrinsic coefficient ( f O  1 and fO2) 

defined in an unsatisfactory manner. A more 
useful relation of the same type is Equation 30, 
which is identical with the well-known Darken 
relation for the case of equal, constant partial 
molar volumes. 

Carl Wagner was influenced by Stark's analy- 
sis in his treatment of interdiffusion [7]. Wagner, 
however, did not introduce intrinsic coefficients 
but dealt only with a single interdiffusion coef- 
ficient /), determined by two different atomic 
velocities v or fluxes J: 

x ,  X 2 ( v ,  - v2) f'(x2J  - x 4) 
dX2/dx dX2/dx 

(37) 

Since there is only one independent coefficient 
(15) in the absence of data on the motion of 
markers, the two coefficients cD~ and cD2 
associated with J~ and J2 (or with vl and Vz) are 
interrelated in a manner that depends on the 
choice of conventional (subscript C) reference 
system. Because Wagner set J1 = - J2 (by his 
determination of the Matano interface) and used 
Equation 17 for the first Fick law, it follows that 

cDj = ~22 cD2 (38) 

Thus, Wagner's relation (Equation 37) is more 
complex than necessary because of an incon- 
venient choice of reference system. By use of  
Equation 28 the same physical meaning is given 
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by the simpler expression 

5 - ~7J1 
dY2/dx (39) 

This result can also be obtained from Equation 
37, since X 2 = 1 - X1 and J2 = - Ji.  

The difference between the use of  Equations 
39 and 37 is this: in the first case / )  is determined 
directly by Equation 39, whereas in the second 
case /5  is determined through the intermediate 
relation 

/~ = C,~ cD2 + C2~ cD, (40) 

when Equation 37 is employed. In addition to 
this unnecessary complexity accompanying the 
use ofcD1 and cD2, there is the possibility of the 
serious error dicussed above in connection with 
Equation 1. Sauer and Freise [4] made this error 
and employed the form of  the first Fick law 
appropriate for the Fick reference system 
(Equation 1), although they employed the 
molecular reference system (by virtue of their 
method for determining the Matano interface). 
Consequently, Sauer and Freise concluded 
incorrectly that there are two different Matano 
interfaces which move further apart as diffusion 
proceeds. As shown by van Loo [9], Balluff's 
treatment [3] is equivalent to that of  Sauer and 
Freise [4]. Thus, all of  the previous treatments 
based on the use of  ordinary Cartesian coordi- 
nates are similar and suffer from two defects: (a) 
unnecessary complexity (Equation 40); and (b) 
likelihood of  error in applying/) .  

Cohen et al. [2] devised a treatment based on a 
special coordinate 3, such that 

d~ = dx/V (41) 

They employed the molecular reference system 
and obtained for the second Fick law 

#t - O~ D'  0~J  (42) 

where D'  is the coefficient appropriate for use 
with the special coordinates. Son and Sano [10] 
have shown that the relation 

D' = /)/192 (43) 

is general, and that a restriction to dilute sol- 
utions [2] is unecessary. With the use of 
Equations 41 and 43, Equation 42 becomes 
identical with Equation 69 (Section 5). In view of 

the convenience of  Cartesian coordinates, there 
is no reason to use Equation 42 with its special 
coordinates since Equation 69 also has a simple 
form. 

3. Latt ice reference system 
The conventional reference velocities (D m and cot 
considered in Section 2 were obtained as weighted 
averages (Equations 10 and 12), of  the diffusion 
velocities vl and v2 of  the two components. A 
conventional velocity need not correspond to 
any experimentally observable feature of  the 
diffusion system. In contrast, a lattice reference 
velocity, co = coL, is basically obtained from 
experimental measurements of  motion of  the 
crystal lattice. Because no relation between vl 
and v2 is generally involved, the two diffusion 
fluxes defined by Equation 13 are now indepen- 
dent; , 

LJI = Cl(Vl -- coL) 

and LJ2 = C2(v2 - coL) (44) 

(In the treatment beginning with Equation 31 
and also in the work of Guy and Oikawa [1], the 
notation vK and KJ~ was used for the quantities 
coL and L~. The present notation is more general, 
since Kirkendall (subscript K) markers rep- 
resent only one of various techniques for obtain- 
ing information on the velocity of the crystal 
lattice.) Since two independent diffusion fluxes 
are given by Equation 44, it follows that there 
should be two independent diffusion coefficients. 
These coefficients can be defined in significantly 
different ways, by analogy with Equations 17 or 
28. We will first consider the results obtained 
with Equation 17. 

Because Equation 17 is associated with the 
Fick (subscript f) reference system, the anal- 
ogous equations define intrinsic diffusion coef- 
ficients rDi by the following form of the first Fick 
law; 

dC~ 
LJI = - -  fD1 - ~ x  and 

dC2 
L ~  = -- fO2 dx 

(45) 

The relation between these two fluxes can be 
determined with the aid of Equation 6 and is 
found to be 

V2 fD1 
LJl -- L J2 (46) 

V1 fD2 
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Figure 3 Schematic illustration of the position of the 
Kirkendall interface x L = 0 on the diffusion curve of Fig. 1. 
The positions of the origins of the two conventional ref- 
erence systems are shown for comparison. The relative mag- 
nitudes of the three types of  fluxes in the volume element at 
the composition of the Kirkendall interface are indicated by 
the length of  the arrows. 

Fig. 3 shows schematically how the Kirkendall 
interface is related to the diffusion curve of 
Fig. 1. In this case Areas 1 and 2 are in the ratio 

fD1 /~  fD2 or 1/10. The positions of the ori- 
gins of the two conventional reference systems 
are also indicated. 

Just a s / )  is adequate for describing a given 
diffusion curve in terms of the Fick reference 
system, so also is the pair rDl and f D  2 a n  equiv- 
alent adequate means for describing the same 
diffusion curve. In view of this equivalence of /5  
to fD~ with rD2, a relation must exist among 
these three coefficients. The following procedure 
can be used to establish the relation that exists 
between the two lattice fluxes and the equivalent 
flux in the Fick reference system. Employing 
Equations 12 and 5, we can manipulate 
Equations 15 and 44 as follows: 

fJ~ = ~ C2(v2 - coo 

= C,~(72172(v2- v,) (47) 

V~ V2C2 LJ, = VT V2C, C2(v, - COL) (48) 

Vt V2C~ L J2 = VT V2C, C2(v2 - COL) (49) 

When Equation 48 is subtracted from Equation 
49 and the difference is compared with Equation 
47, the result is 

tT,(C, LJ2 - C2LJ,)  = rJ2 (50) 

as the desired relation among the fluxes. The 
corresponding relation among the diffusion 
coefficients is obtained by substituting 

Equations 17 and 45 into Equation 50, to give 

/ )  = C, "V1 fD2 --I.- (72 V2 rD, (51) 

This relation is the so-called "invariant" 
(Equation 29) discussed above, and depends on 
the use of  Equation 17 for the first Fick law. 

If  Equation 28 is used as the first Fick law, the 
two parts of Equation 45 take the form 

D1 dXl 
L J1 = -- -~ dx 

D 2 dX2 
and L J2 -- V dx (52) 

where D~ and D 2 a r e  the intrinsic diffusion coef- 
ficients defined by these equations. These D~ 
values are related to the molecular reference 
system, but the "m"  subscript is omitted for 
simplicity. A derivation analogous to that of 
Equations 47 to 51 can be made for the molecu- 
lar reference system using Equation 52 in place 
of  Equation 45. The result is Darken's relation 
(Equation 30). Both Equations 51 and 30 are 
valid for variable partial molar volumes. 

4. Absolute diffusion velocities in 
metals 

In Section 2, conventional reference systems 
were treated in terms of  a reference velocity co 
(Equation 8) that is a weighted average of  the 
diffusion velocities vi of  the two components. In 
this case only the difference in velocity (vi - co) 
has physical significance [11]. If, on the other 
hand, the lattice reference system is employed, it 
will now be shown that absolute values of  dif- 
fusion velocity can be determined and employed 
in calculations. This means that equations of  the 
form 

J, = v,C, (53) 

can be employed. 
To demonstrate the nature of absolute dif- 

fusion velocities, only the simplest case of binary 
diffusion need be considered; namely, interdif- 
fusion of two pure metals, Metals 1 and 2, that 
form a complete series of solid solutions under 
the conditions of diffusion. After diffusion, the 
intial plane that separated the two metals can be 
seen microscopically as a faint line of  oxide par- 
ticles forming the Kirkendall interface. Chemi- 
cal analysis can determine the total quantity Qi 
of Metal i that diffused across the Kirkendall 
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interface and entered the other metal. For the 
composition C~ of the Kirkendall interface, the 
value of vi can then be determined by the relation 

f~ J~dt - Q' - f~ v~C fi d t  (54) 
A 

where A is the cross-sectional area of the speci- 
men and v is the time of diffusion. Since the 
Kirkendall interface shifts relative to a fiducial 
reference plane (such as an undiffused plane in 
the specimen) at a rate proportional to  1/1: V2, 

Mr 
v~ = r~/-- ~ (55) 

where M~ is a constant for a given diffusion 
specimen. The composition C~ at the Kirkendall 
interface remains constant, and therefore when 
the value for v~ given by Equation 55 is substi- 
tuted in Equation 54, definite integration yields 
the relation 

Qi ~M~= 
2Azl/2 

Substitution of Equation 56 in Equation 55 gives 
the desired expression for the absolute velocity 
of component i: 

Qi (57) 
vi - 2CiK A.r 

Although the velocities vi and therefore the 
fluxes J~ have absolute values, the magnitudes of 
the corresponding diffusion coefficients D~ 
depend on the choice of the definition of Fick's 
first law as discussed in Section 3. The two com- 
mon definitions (Equations 17 and 28) lead to 
the alternative expressions for the intrinsic dif- 
fusion coefficient 

dCi 
Ji - rDi d x  

and 

Di dX~ 
Ji = - ~ d - ~ -  

The advantages of the Di defined by Equation 59 
were discussed above in connection with 
Equation 36. 

The intrinsic diffusion coefficient D; can be 
expressed in terms of experimental quantities in 
the following manner. Use of the variable 
)~ = x/.d/2 permits writing Equation 59 in the 

form 

D~ dX,. 
J, - p~,/2 d2 (60) 

For a given value of Xr, d ~ / d 2  has a constant 
value. Therefore, for the value X~ at the 
Kirkendall interface it follows from Equations 
53, 57 and 60 that 

Qi 12 d2 Qi l? dx 
Dr = - 2A'c I/2 dXi 2 Az  dXi (61) 

where dX~/dx is the concentration gradient at the 
Kirkendall interface after diffusion for the time 
r. Equation 61 permits experimental determi- 
nation of the value of the intrinsic coefficient D~, 
for use in the first Fick law given by Equation 59. 

5. The second Fick law 
An important problem in diffusion theory is the 
calculation o f /3  from an experimentally deter- 
mined diffusion curve for a binary alloy system 

(56) in which appreciable changes in volume occur. 
The starting point for such an analysis is a defi- 
nition o f / ) ,  but fortunately there is general con- 
sensus that /5  is defined by Equation 17; that is, 
relative to the Fick reference system and with 
concentration (72 in moles per unit volume. As 
shown by Equation 16, the origin xf = 0 of the 
Fick reference system remains fixed with respect 
to the ends of  the specimen if the partial molar 
volumes ~'1 and if'2 are constant. If  171 and 172 are 
functions of concentration, however, the overall 
length of the specimen will change (Fig. 4) and 
in general xf = 0 will continuously shift away 
from the position xc = 0 (fixed with respect to 
an end of the specimen) which it occupied at the 
start of the diffusion process. I f /5  is to retain a 
meaning consistent with that for simpler cases, it 

(58) must be defined relative to a conventional refer- 
ence system, specified for example by xf = 0 or 
Xm = 0 in Fig. 4. The disadvantages of the 
choice of Xc = 0 or of xf = 0 have been dis- 

(59) cussed in Section 2. 
Not  only does the molecular reference system 

have advantages relative to ease of analysis, but 
its origin (Xm = 0) is easily located on an exper- 
imental diffusion curve. Because equal numbers 
of atoms of Metals 1 and 2 have crossed a mol- 
ecular reference plane, the plane at Xm = 0 
divides the diffusion curve into two parts such 
that Area 1 and 2 in Fig. 4 are equal. For this 
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Figure 4 Schematic illustrations of a fixed reference system 
xe, and of two conventional reference systems x r and x m , in 
the case of volume changes that produce expansion in a 
diffusion couples. Vz ~ is the molar volume of pure Metal 2. 

choice of  reference system, the first Fick law can 
be written in terms of  mole fraction X~ in the 
form given by Equation 28. The conversion of  
this form of the first Fick law into a conven- 
tional form of the second Fick law will now be 
considered. 

The derivation of  the second Fick law must 
take account of  two contributions to the rate of 
change of  composition with time, aCl lot. The 
first is the usual accumulation of  Component  1 
per second in a volume element of  thickness dx 
and of unit area; 

~----~ ( -J~)  dx = -~x ax } dx (62) 

The second contribution arises from the loss of  
Component  1 from the volume element because 
of expansion due to the effects associated with 
changes in the partial molar volumes. The latter 
contribution can be determined as follows, start- 
ing with the standard expression for the total 
molar volume: 

17" = X , ~  + X 2 ~  (63) 

The rate of  change of 17" is 

~t " l ~ - +  " 2 ~ - - { -  X ' O t - +  X2 0t 

= (l?l _ ~ )  OXI (64) 
at 

since x~ d ~ + X2 d ~ = 0. If  the entire change 
in volume occurs as an expansion in the x direc- 
tion, the velocity of  separation of the two mol- 
ecular reference planes separated by the distance 
dx is 

(JT, - ~ )  a x ,  
- -  d x  (65) v = I y at 

The amount  vC~ of  Component  1 is removed 
from the volume element as a result of  the 
expansion in question. 

When Equations 62 and 65 are employed to 
determine aC~/at the result is 

~CI _ ~ (D_ ~ aXl"~ Cl(Vi  - V2) aXl 
0t ax \17" c3xJ I ~ at 

Using the relation Xl = C1 I7", 

~Cl 1 ~x1 xl ~ 
Ot v at 172 at 

Substitution of  the value of  a('/Ot 
Equation 64 gives 

(66) 

(67) 

from 

Ot = 1 V ~ (68) 

When this expression is employed in Equation 66, 
the final result is 

P O t  - Ox --~-xJ (69) 

This relatively simple form of the second Fick 
law has not previously been reported in the 
literature. 

For the special case in which ~ = ~ ,  
Equation 69 reduces to the usual equation 

ax,  _ a (sax   (70) 
ctt #x \ ax J 

For  the specia/l case of  constant but unequal 
values of  V i ~ d  I7"2, however, Equation 69 must 
be used in essentially its complete form since I2 
is then a linear function of  Xl. A simpler 
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procedure in this case is to use volume fraction 
as the unit of concentration [14] since the second 
Fick law then has the form of Equation 70. The 
appropriate interface for use with the 
Boltzmann-Matano method in this case divides 
the diffusion curve into two unequal areas in the 
ratio V2/V~. In contrast, the origin of the mol- 
ecular reference system divides the diffusion 
curve into two equal areas. 

The actual evaluation of 15 from the exper- 
imental data of a diffusion curve by means of 
Equation 69 can be done either graphically or 
with the aid of a suitable computer program. In 
either case the most convenient procedure is that 
given by Equation 9 in den Broeder's paper [8], 
since the position coordinate of the Matano 
interface need not be detemined explicitly in this 
method. 

6. D i s c u s s i o n  
Anyone who has tried to include the effects of 
variable molar volumes in an analysis of dif- 
fusion (or any other phenomenon) can testify to 
the perplexing difficulties that are encountered. 
These difficulties have even led to such mislead- 
ing treatments in the literature as the 
"invariant" discussed in Section 2. The key to 
the resolution of these difficulties is surprisingly 
elementary; namely, a proper use of reference 
planes. For example, even though the variation 
in molar volume causes a specimen to increase in 
length, a reliable point in the specimen is fur- 
nished by the origin of the molecular reference 
system. An immediate consequence of the 
availability of this reference point is the feasi- 
bility of using ordinary Cartesian coordinates 
for an analysis. 

The use of Equation 28 as the analogue for 
defining the intrinsic diffusion coefficients has 
the advantages discussed in Section 2. The basic 
correctness of this procedure, moreover, is 
shown by the fact that the same definition is 
preferred for the general treatments of nonequi- 
librium thermodynamics [15] and for analyses of 
diffusion in gases [16]. 

The present demonstration of absolute dif- 
fusion velocities has two significant aspects. 
First, it gives an example of a system in which a 
reference velocity is not essential. Previously 

[11], even for systems in which Kirkendall shifts 
had been measured, a lattice reference velocity 
was employed in the analysis. Second, although 
it was known that intrinsic diffusion coefficients 
could be determined from the (absolute) fluxes 
crossing a Kirkendall interface, it was not recog- 
nized that these coefficients could have two dif- 
ferent values, rDg or Di, depending on the choice 
of reference system (Fick or molecular) for the 
interdiffusion coefficient. 
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